

# Urban Climatic Map of Arnhem City

Rene Burghard, Lutz Katzschner, Sebastian Kupski, University Kassel

> Ren Chao, Tejo Spit University Utrecht





May 2010

## **1 INTRODUCTION**

In the framework of urban planning strategies as well as the global climate change, urban climate maps are an important tool for master or zoning plans. Moreover in a changing climate the analysis is used to mitigate heat stress and heat risk. Beside the thermal comfort conditions a clean air strategy can be based on that. In this report an urban climate map for the City of Arnhem (NI) is presented.

The concept of **Urban Climate Map** (**UCMap**) has been generated by German researcher since the 1970s. It has been used as an appropriate tool for presenting climatic phenomena and problems into 2 D spatial maps. The map analysis the urban climate and gives recommendations toward defined climatopes.

The Urban Climate Map synergistically combines various climatic parameters like wind directions and speeds, solar radiation, air temperature with information about the city topography, landscape, building bulks, street grids and so on. The UC-AnMap can tell how the streets are ventilated, where the more comfortable spots are , where the problematic areas are, and how the buildings affect the city wind environment (Ng, E., Katzschner L. and Wang U. 2007). With information like these, planners and designers could have a better climatic basis of decision making. Apart from the physical factors, the development of the UC-AnMap is also based on qualitative and subjective criteria (Scherer, Fehrenbach, Beha, & Parlow, 1999). Evaluation is carried out through a GIS based model, which could calculate weighting factors for each mesh with a result of thermal load aspect and dynamic potential aspect. Then the general urban climatic understanding from UC-AnMap is transferred by expert and planners into the UC-ReMap with planning advices from the climatic point of view.

For Arnhem the UC-AnMap and the UC-ReMap are combined following the latest developments of the "Klimaplanatlas" Frankfurt 2009, Kassel 2010 and Berlin 2008. Based on the 4th Assessment Report of Intergovernmental Panel on Climate Change (IPCC)<sup>1</sup>, climate change and higher summer temperature is an inevitable future. For The Netherlands the warming up will continue with a temperature rise of 2 to 4°C in the next century that Dutch people will especially suffer in summer. After the recent heat waves in 2003 and 2006, the effects of climate change on public health start to be recognized in The Netherlands. The Netherlands is a densely populated country, which occupies 41.546km<sup>2</sup> with a total population of 16.339 million.<sup>3</sup> Careful spatial planning for mitigating climate change and creating a comfortable living environment is therefore needed. However, until recently, urban climatology has not been a popular issue in The Netherlands and it has low impact on the spatial planning in Dutch planning practice. The main reasons include the communication problem between climatologists and planners<sup>4</sup>, and a lack of tool for presenting urban climatic conditions with spatial information in planning language, which could help planners to understand climatic phenomena and make urban design appropriately. Thus, there is a need for conducting Urban Climatic Map (UC-AnMap) study in The Netherlands. It may assist designers and planners better strategically plan the city so as to result in a quality environment for the benefits and enjoyments of the local inhabitants and visitors.

Arnhem is located in the temperate climatic zone with cool summers and mild winters. Optimizing urban human thermal comfort is important. The drafting of urban climatic map taking into account the synoptic climate information, planning and land use information can be a useful information tool.

# 2 SCALES

Table1. Planning and urban climate scales

| Administration level   | Planning level     | Urban climate issue  | Climatic scale |
|------------------------|--------------------|----------------------|----------------|
| city 1:25.000          | urban development; | heat island effects; | meso scale     |
|                        | master plan        | ventilation and air  |                |
|                        |                    | paths                |                |
| neighbourhood 1: 5.000 | urban structures   | thermal comfort, air | meso scale     |
|                        |                    | pollution            |                |
| block 1: 2.000         | open space design  | thermal comfort      | micro scale    |
| single building 1:500  | building design    | radiation and        | micro scale    |
|                        |                    | ventilation effects  |                |

UC-AnMap is useful assisting planning decision-making ranging from the regional scale of 1:100,000 to the urban scale of 1:5000. UC-AnMap provides a holistic and strategic understanding upon which detail and further micro-scale studies could be identified and conducted.

For the urban planning results urban climatic maps are an important tool. It is not only the analysis but also the recommendations from it. Any planning aspect needs spatial climatic information with a high resolution in a classification system following thermal and ventilation criteria to find urban climatic characteristics.

All decisions based on the microscale level need further investigations and cannot be answered by the urban climatic map.

For the regional level an investigation was done concerning the wind distribution and characteristic of climates. With that the relation between regional circulations and local circulations can be derived and used for the urban climatic map.

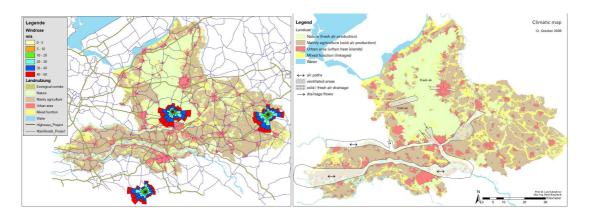



Figure 1. Regional climate map (province Gelderland) with wind distribution as background information for the urban climatic studies in Arnhem and Nijmegen; urban heat islands, cool areas and main wind circulation from a regional point of view

The wind distribution from three stations shows southwesterly winds with higher wind speeds on the one hand and some easterly winds, which occur mainly in winter and during high pressure situations with low wind speeds, on the other hand. In the evaluation of the urban climatic map these wind characteristics was taken up and incorporated in the urban climatic map.

## 3 Methodology

## 3.1 Climatopes

The system of climatopes describes areas with the same urban climatological climatological characteristics. They are gained and influenced by morphological and city fabric factors. They include thermal load, ventilation and can also evaluate the air pollution aspect (VDI 1997)

### 3.2 Wind

For the urban climatic map the two wind systems of background wind and thermal induced winds have to be delt separately. Wind roses give information about the annual wind direction distributions. Combined with low surfaces and channeling effect ventilation n areas and air paths were derived.

Beside this phenomena the thermal induced circulations mainly influenced by slopes and large differences in surface heat budget. Both wind systems appear in different dominant or predominant ways (VDI 1997).

#### 3.3 Urban climate maps

The UC-ReMap is planning oriented. Based on the analysis obtained from the urban climatic analysis (UC-AnMap), climatic zones and air paths could be developed and recommendations derived. The colors and symbols showing "Place which requires an improvement" and "Place which should be conserved" from the view of urban climate. Then, with the aim of mitigating the negative situation and protecting the positive situation, the planning advices and guidelines for each zone are offered by expert and planner.

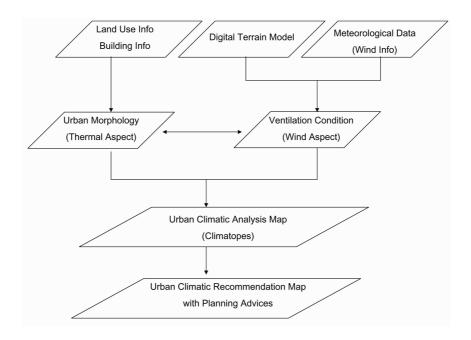



Figure 2. Methodology of urban climate analysis for Arnhem

The underlying methodology for the map is to combine layers, which were conducted from land use maps or others, translated to thermal and dynamic aspect with weighting factors. These weighting factors come from building volume to heat storage, greeneries to heat budget, openness to ventilation, roughness to wind speed and topographical information to downhill movements.

## 3.4 Description of Layers

For urban climate heat storage, heat balance of surfaces and surface roughness are the important influencing factors. These have to be quantified. Therefore layers are developed, which take the urban climate modification in above mentioned sense into account. Principle factors:

- heat balance of surfaces express the cooling rates as well as the heat storage rates, combined with slope analysis downhill movements can be derived. Input data are land use and the surface conditions (C and E),

- buildings effect heat storage and therefore the urban heat island. Volume, density and height are input factors calculated by the building volume parameter (A and B),

- dynamical factors are influenced by roughness length (derived from the vertical wind profile) supported by topographical structures, background wind as well as thermal induced wind are factored in, input parameters to deriver roughness are land use and openness overlaid by slope winds and small scale thermal winds (D).

The last column in table 2 shows the weighting factors for each GIS layer. The number means the importance of the specific layer. So building volume for the heat balance as well as the openness for ventilation has the highest values. This corresponds to the thermal comfort conditions of man where wind and radiation are the most dominant parameters (Katzschner 2006). Here the thermal index of the physiological equivalent temperature is used (Höppe 1999).

|   | layers                                              | urban climate<br>aspect                                                                              | data used                                            | classification<br>with weighting<br>factors             | no. of<br>factors |
|---|-----------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|-------------------|
| A | building<br>volume                                  | heat storage                                                                                         | building<br>information<br>and land use              | in m <sup>3</sup> building<br>volume                    | 6                 |
| В | built up<br>areas and<br>openness                   | heat storage<br>and ventilation                                                                      | building<br>information<br>and land use              | % relation of<br>built to non built<br>areas            | 6                 |
| C | cold and<br>fresh air<br>production,<br>green areas | heat balance of<br>surfaces<br>production of<br>fresh and cool<br>air, influencing<br>neighbourhoods | land use<br>classification,<br>surface<br>conditions | in m <sup>3</sup> /m <sup>2</sup> *h as<br>cooling rate | 3                 |
| D | roughness,<br>air paths<br>and<br>ventilation       | land use,<br>openness, use<br>of background<br>wind and local<br>circulations                        | land use and<br>openness<br>surface data             | $z_o$ derived from the wind profile                     | 2                 |
| Е | slope<br>analysis,<br>downhill<br>movements         | relief energy<br>for thermal<br>induced<br>circulations                                              | digital<br>elevation<br>model                        | in percent slope<br>inclination                         | 3                 |

Table 2. Layers used for the urban climatic map

## 4 **RESULTS** URBAN CLIMATIC MAP OF ARNHEM

The map synergizes all collected information and analysis to present the climatic understand and evolution. The above mentioned layerstranslated to meteorological characteristics like heat storage (thermal load), cooling effects, surface conditions and surface roughness and dynamic parameters (wind pattern). Different categories were derived and can be described for planning aspects. The evaluation follows the thermal load index Physiological Equivalent Temperature (PET) The physiological equivalent temperature (PET) is used because it describes the thermal load based on the heat balance of man. PET is calculated from the influencing meteorological parameters of wind speed, radiation, air temperature and humidity. The index tells how different people from around the world are able to cope with different temperatures. For people in the Netherlands a temperature of 22°C is most suitable. Below and above that threshold people could have an uncomfortable feeling.

The legend of the map has two categories. One comes from the calculation, and the other is wind information with land use information in addition to that. Green colours mean cold air production with downstream drainage or fresh air with or without relief

energy, the light green and orange areas are mixed zones which can be warm during day but are able to cool down at night, while the red colours indicates areas with more risk of heat accumulation. So altogether there are six classifications from strong heat load, mixed climates, cold production areas, including the sublayers to explain land use differences. Here one can even differentiate with one classification following the city structure and building density. The wind information as well as the sublayers are added in the map as an information layer, but they are already factored in into the six classification results. They show the direction as well as whether they are part of an air path or a slope circulation system. All layers are explained in detail in chapter 5.

The urban climate map of Arnhem shows three different sections of a heat island. City centre, residential areas and parts of the built up outer surroundings. The sublayers express some variability inside one classification due to city structures. Further on in the table as well as in the map, the sublayers are an additional information added on to the calculation. With this one can explain the inhomogenousity of one classification but not in a detailed spatial accuracy.

Industrial areas have head load but somewhat buffered through a sufficient ventilation, especially those affected by the main air path with background wind.

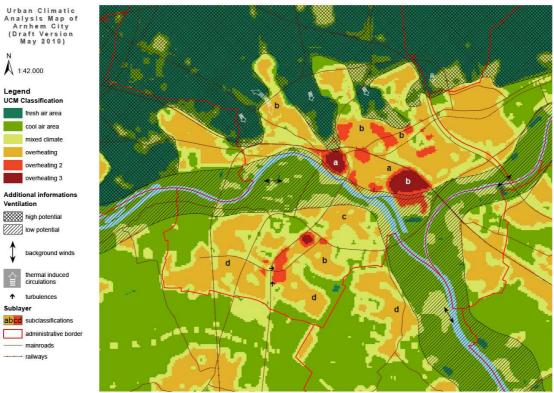



Figure 6. Urban climatic map of the City of Arnhem

The effect of air paths as well as thermal induced circulation in the northern part of the city (on the slopes of the 'Veluwe') is remarkable The difference of 70 m height is enough to create downhill movements. In connection to the valley wind (upstream and downstream) and to background winds are important factors. For the map the ventilation classification is separated in: low potential, which needs background

winds and high potential, which is driven by relief and heat balance differences of surfaces.

# **5** Conclusions from the Urban Climate Map of Arnhem

To understand and to use the map for urban planning some evaluations must be done. Here the conclusions are written in a table following the legend from the map (figure 6). This is a general recommendation on the level of the urban climate map zones. Cool and fresh air areas have to be preserved or even enhanced, while the urban heat island, especially zones 5 and 6 should be improved. The first two react sensible to land use change, while in the last two land use change should lead to an improvement of heat stress.

Concerning the sublayers in the table as well as in the map, these are additional information added on to the calculation. With this one can explain the inhomogenousity of one classification but not in a detailed spatial accuracy.

Detailed local recommendations will follow, but cannot dealt with here on the urban scale.

| classification                                  | climatic<br>description                                                                                                                                                                                                                                 | Morphology                                                     | Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>Cool air and fresh air<br>production zones | Open areas with<br>significant<br>climatic activity,<br>cool and fresh air<br>production;<br>climatically<br>active open sites<br>in direct relation<br>to the housing<br>area; in<br>combination to<br>slopes very<br>effective in<br>cooling the city | All areas with<br>vegetation<br>including parks<br>and forests | Areas to carefully<br>preserve:<br>High sensitivity with<br>respect to intervention<br>which changes in land<br>use. Do not allow to<br>increase the surface<br>roughness (e.g. no<br>further constructions<br>or buildings). Keep<br>open of cold/ fresh air<br>stream; Minimize the<br>existing barrier on the<br>air streams. The air<br>movement<br>connections must be<br>fully analyzed and<br>understood including<br>the source of the air<br>stream channels,<br>which may be far<br>away from the<br>concerning area. |

|                                                                 | Open areas with<br>less significant<br>climatic activity;<br>but fresh air is<br>production effects<br>neighborhoods | All areas with<br>vegetation here<br>mainly<br>agriculture, parks<br>and gardens, no<br>pollutions<br>sources                       | Areas to preserve:<br>The increasing surface<br>roughness (e.g. further<br>constructions or<br>buildings) can only be<br>allowed if they respect<br>slope winds and<br>thermal induced<br>circulation pattern;<br>furthermore,<br>redevelopments<br>should only be<br>allowed in exception<br>case, which is<br>supported by detailed<br>investigation and |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mixed areas including<br>a) train track<br>b) residential areas | strong daily<br>variation through<br>income radiation,<br>but good cooling<br>effect                                 | Train areas as<br>well as small<br>housing areas<br>and smaller<br>parks, the built<br>up areas with<br>linkages to<br>surroundings | Areas with possible<br>development:<br>Important linkage<br>areas, foresee the<br>orientation and<br>density of buildings,<br>surface roughness<br>should not be<br>increased due to<br>reduction in<br>ventilation with effect<br>on neighbourhoods                                                                                                       |
| moderate urban heat<br>a) dense row<br>houses 4 -5<br>storey    | Some heat<br>storage but<br>mainly buffered<br>through<br>greeneries and<br>wind                                     | small housing<br>areas all with low<br>heat storage but<br>with some heat<br>load                                                   | Development allowed:<br>No appreciable<br>sensitivity in terms of<br>climate with respect to<br>intensification of use<br>and building<br>agglomeration.<br>Generally<br>redevelopment is<br>possible if they take<br>care about ventilation<br>and if the ratio<br>between built up area<br>versus green area is<br>maintained/respected.                 |

| <ul> <li>5</li> <li>remarkable urban heat</li> <li>island including <ul> <li>a) city</li> <li>b) offices, low</li> <li>industrial but</li> <li>ventilated</li> </ul> </li> </ul> | heat storage<br>remarkable but<br>still some wind<br>effects and<br>cooling potentials | more dense and<br>higher buildings,<br>but still some<br>cooling effect<br>either through<br>greeneries or<br>wind | Areas for<br>improvement and plan<br>actions are necessary:<br>Risk of future heat<br>stress with some<br>ventilation. So<br>generally the areas<br>should be maintained<br>or improved, and not<br>worsen. Development<br>can only be allowed<br>with compensation for<br>climate effects. The<br>existing air circulation<br>should be analyzed<br>before any proposed<br>change so that the<br>urban climate is<br>respected                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6<br>urban heat island<br>maximum including<br>a) inner city<br>b) industry high<br>also shopping mall in<br>southern part of the city                                           | heat storage high<br>and low cooling<br>potentials and<br>low ventilation              | densely build up<br>areas with high<br>percentage of<br>concrete,<br>ventilation rather<br>low                     | Areas for<br>improvement and plan<br>actions are necessary:<br>In need of renewal<br>from the point of view<br>of urban climate.<br>Greenery for facades<br>and surfaces are<br>needed.<br>Increasing of existing<br>heat stress, due to the<br>accumulated problems<br>on thermal load in the<br>high dense built-up<br>area, the climatic<br>condition of this zone<br>should be improved.<br>Development in this<br>zone is allowed only if<br>enough compensation<br>is done. Improving air<br>exchange is one major<br>recommendation<br>together with shadow<br>providing design. |

| 7<br>air paths for background<br>wind and thermal<br>induced ventilation<br>pattern                                                                                                              | background and<br>regional winds           | Open areas with<br>low roughness,<br>used for<br>background<br>winds                                                              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|
| 8<br>areas for thermal<br>induced circulations                                                                                                                                                   | thermal winds<br>and slope<br>circulations | Open areas with<br>some buildings<br>but affected by<br>thermal induced<br>circulation such<br>as cool and fresh<br>air movements |  |
| <ul> <li>Wind information from urban climate map</li> <li>a) regional wind using air paths</li> <li>b) thermal induced circulation</li> <li>c) downhill winds</li> <li>d) turbulences</li> </ul> |                                            |                                                                                                                                   |  |

## **REFERENCES:**

Climate change 2007: The Physical Science Basis-Summary for Policymakers, in Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. 2007: Paris, France

Höppe, P., 1999. *The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment*. Int. J. Biometeorol. 43, 71-75.

Ng, E., Katzschner L. and Wang U. 2007. *Initial Methodology of Urban Climatic Mapping – Urban Climatic Map and Standards for Wind Environment – Feasibility Study*, Technical Report for Planning Department HKSAR, April 2007

Katzschner, L. 2006. *Behaviour of people in open spaces in dependence of thermal comfort conditions*, in: clever design and affordable comfort, PLEA proceedings p. 505 - 510, Geneva

Scherer, D., et al., *Improved concepts and methods in analysis and evaluation of the urban climate for optimizing urban planning process*. Atmospheric Environment, 1999. **33**: p. 4185-4193.

Senat Berlin 2008. *Geoinformation-Berlin Digital Environmental Atlas*. 2008 [cited 2004; Available from:

http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/edua\_index.shtml

Umweltamt der Stadt Frankfurt 2009. Klimaplanatlas der Stadt Frankfurt, Universität Kassel FG Umweltmeteorologie, www.stadt-frankfurt/umweltamt

VDI, VDI-Guideline 3787 1997. Environmental Meteorology-Climate and Air Pollution Maps for Cities and Regions, VDI, Editor. 1997: Beuth Verlag, Berlin.

Zweckverband Raum Kassel 2010. *Klimaanalyse des ZRK*, Universität Kassel FG Umweltmeteorologie, www.zrk-kassel.de